
Copyright @Raymond All rights reserved.

Raymond,
2025/05/16

Big Data Analysis Enabler(BDAETM)

Introduction Summary

Copyright @Raymond. All rights reserved

General1

BDAE(TM) can be used in most fields that use Oracle Database(TM) , Non-stop
installation/patching, algorithms or logic can be applied immediately to existing solutions
without any downtime.

BDAE(TM) is executed as a SQL statement and the results are retrieved like the results of a
general SQL statement, so a separate application server is unnecessary, and all logic
(including the backend) can be implemented in Python and R.

Available for use in all MES, SPC, FDC, YMS and Smart Factory configuration systems in
manufacturing, finance, energy, etc.

2

Copyright @Raymond. All rights reserved

BDAE(TM) for What2

BDAE(TM) is built on Oracle In-Database technology and has platform features that enable
Oracle Database(TM) to be used not only as a simple storage for general AI tasks, but also as
a non-stop operating environment without the overhead of data movement during learning
and inference.

※ BDAE(TM) advantages include development productivity (Python, R), parallel processing,
and bringing performance into the real-time domain.

3

Copyright @Raymond. All rights reserved

BDAE(TM) SW Configurations & Architecture3

4

Left Image Shows the operating location of
BDAE(TM) in the form of Oracle In-Database.

Parallel distributed processing is a feature of
Oracle In-Database, and analysts do not need
to consider it in their modules, which increases
the reusability of logic.

In addition, the fact that it can be integrated
with various analysis engines can be seen as an
advantage of BDAE(TM) .

BDAE(TM) can operate on any architectural configuration of Oracle Database(TM) .

Copyright @Raymond. All rights reserved

BDAE(TM) Docker-based Demo environment4

BDAE(TM) consists of two parts: oracle_bdae and bdae_web.
bdae_web is made with Spring Boot + JSP, and oracle_bdae is installed with BDAE(TM) on
the image distributed by Oracle, and then distributed to customers as an export file. (It
can be delivered via USB storage device)

5※ If necessary, please request to gracesjy@naver.com. I will provide you with the
Google Cloud shared file URL.

Copyright @Raymond. All rights reserved

BDAE(TM) Build, Packages5

BDAE(TM) is built on Oracle Linux(TM) (OL, formerly OEL: Oracle Enterprise Linux(TM)).
BDAE(TM) can run on any Linux or UNIX environment supported by Oracle Database(TM).

As of now, BDAE(TM) has been built on versions 6, 7, 8, and 9 of the RedHat series (including
Oracle Linux). Once built, it is provided in the form of a library file along with PL/SQL, etc.,
and can be installed.

Oracle In-Database Programs(including BDAE(TM)) must be written in C with PL/SQL, Type,
Function, etc., so it needs to be built. Engines such as R and Python are all written in C, and
can be viewed as being similar to the device driver of the operating system. (Oracle Database
is guaranteed by OL/OEL and is related to the GLIBC version.)

※Customers can install Python and R packages themselves, and on Nexus-based systems, the
package location can be changed to Private Network.

※Setting up parallel processing for a specific schema is as simple as creating a BDAE(TM)

Oracle Function, and you can refer to the existing built-in examples. (This will be explained in
the future when introduced.)

6

Copyright @Raymond. All rights reserved

BDAE(TM) Docker Installation6

In a Windows environment, install Docker Desktop first and then proceed as follows.
For Docker Desktop installation, refer to the relevant Internet document.

Import two Docker Images: Oracle Database(TM) + BDAE(TM) , BDAE(TM) Web and run
them respectively.

7

docker load -i oracle_bdae.tar # Oracle Database(TM) + BDAE(TM)

docker load –i bdae_web.tar # BDAE(TM) Web

check docker images above, and run belows

docker run --name oracle_bdae -p 1521:1521 -p 5500:5500 –p 8888:8888 oracle_bdae:0.5

docker run –-name bdae_web –p 8080:8080 bdae_web:0.5

Oracle Database Access :
> Oracle Service Name : FREE, TNS Port : 1521, IP : 127.0.0.1

Web Server Access :
> http://127.0.0.1:8080

Copyright @Raymond. All rights reserved

Before using BDAE(TM) ..7

Oracle R Enterprise(TM) , a commercial product from Oracle Corporation, supports only the R
language. Of course, great analysts have built their main algorithms into R packages, but the
reality is that a lot of code needs to be written.
And the written code must be stored as a DB table and does not provide a GUI.

On the other hand, BDAE(TM) supports for Python, R, and JAVA for ETL (mainly Hadoop, etc.),
has a simple web screen, and inputs the customer's algorithm into the DB through this web
editor.

Normal development is often done in R Studio for R or Jupyter notebook for Python, and what is
developed here can be copied and pasted into BDAE(TM) Web.

※ BDAE(TM) Web is a bundle, and it is intended for reference when building a basic CRUD
function and a future customer-specific construction. (When used with Apache NIFI(TM), it is
effective for real-time, batch work, scheduling, etc.)

8

Copyright @Raymond. All rights reserved

BDAE(TM) Web8

You can register, search, and delete R Modules and Python Modules mainly through the
Administration menu on the left, and you can register data and SQL for calls and check the
results by executing them immediately.

(※ The basic purpose of BDAE(TM) Web is to register and execute customers' algorithms in
Python and R modules.)

9

Copyright @Raymond. All rights reserved

Oracle R EnterpriseTM SQL9

Below is the Embedded Script Execution form provided by Oracle R EnterpriseTM .
The bottom two (sys.rqScriptCreate, rqScriptDrop) are for module input and deletion, which are
a bit inconvenient.

In the case of BDAE(TM), creation, modification, and deletion are done in the Web Editor, so it is
convenient.

※ Oracle R EnterpriseTM does not have version control capabilities for R code.
On the other hand, BDAE(TM) has a schema structure that allows version management and is customizable.

※ Looking at the contents of rqScriptCreate, it is INSERT INTO ..., but indentation is very important in Python, and since
both Python and R use “ ”, ‘ ‘, etc., it takes more time to write SQL INSERT distinctions. In particular, in the case of
Python, since it mixes “””, “”, ‘ ‘, it is almost impossible with the INSERT syntax.

Copyright @Raymond. All rights reserved

BDAE(TM) SQL10

BDAE(TM) supports both R and Python, providing a total of 8 functions, twice that of Oracle R
EnterpriseTM . The arguments are the same and both Concept and Oracle In-Database follow the
same architecture.

Description (Oracle R EnterpriseTM 와 비교)SQL Interface function

Same rqEval()asEval()

Same rqTableEval()asTableEval()

Same rqRowEval()asRowEval()

Same rqGroupEval()asGroupEval()

Invoke stand-alone Python moduleapEval()

Invoke Python module with full table as inputapTableEval()

Invoke Python module on one row at a time, or
multiple rows in chunks

apRowEval()

Invoke Python module on data partitioned by gr
ouping column

apGroupEval()

11

Copyright @Raymond. All rights reserved

Register and Run, Using BDAE(TM) Web11

BDAE(TM) can be registered and executed in 3 steps below.

1. Registering R or Python modules (reusable)
2. Registering BDAE(TM) SQL statements for integration with DB data and registered R or

Python modules.
3. Execute the registered SQL statement above and view the results.

That's all. It patches instantly in real time and doesn't affect existing versions that are running.

Since the data to be analyzed and output by both Oracle R Enterprise(TM) and BDAE(TM) exists
within the Oracle Database(TM), everything must be described in SQL statements.

That is, both input and output are in a table-like data format that Oracle Database(TM) can
understand, but the temporary part inside can be composed of various formats and codes.

※ Normally, after performing large-scale analysis or Hadoop or file-based analysis, the results
are put into RDBMS, but BDAE(TM) can automatically perform these tasks.
※ Because Oracle Optimizer uses statistical information and Data Dictionary for input and
output when executing SQL and then determines a plan, you must explicitly inform it about input
and output. This is why input and output are specified in Oracle R Enterprise(TM) or BDAE(TM)

SQL format.
12

Copyright @Raymond. All rights reserved

R Coding Style (#1)12

There are two R coding styles for BDAE(TM) , the first of which is a functional form as follows:
BDAE(TM) automatically finds the function argument names data and args and calls them by
inserting the data.
Therefore, the analyst can arbitrarily specify the data and args variable names.

function(data, args) {
Registering various dependent libraries
library(xts)
library(quantmod)
library(RCurl)
library(logr)
library(xts)
library(quantmod)
library(RCurl)

...

... < Any data type, model, or algorithm code supported by R can be accommodated. > ...

...

df <- data.frame(col1=c(...), col2=c(...), ... ,stringsAsFactors=FALSE)
return (df)

}
13

Copyright @Raymond. All rights reserved

R Coding Style (#2) - BDAE(TM) Unique Features12

Another R coding style is descriptive, like this:
At this time, data is called by putting it in explicit variable names called data and args in
BDAE(TM), so these two variable names are Read-Only and should not be used for other purposes.

Since there is no return at the end, you must write df, and this variable name (df) can be
anything you want.

library(xts)
library(quantmod)
library(RCurl)
library(logr)
library(xts)
library(quantmod)
library(RCurl)

x <- data # The variable that contains the raw data to be processed is data.
y <- args # Data that contains additional data is args
...
... < Any data type, model, or algorithm code supported by R can be accommodated. > ...
...
df <- data.frame(col1=c(...), col2=c(...), ... ,stringsAsFactors=FALSE)
df

14

Copyright @Raymond. All rights reserved

R Coding Style (#3)12

Check for syntax errors and runtime errors:

Analysts do not need to handle exceptions in the BDAE(TM) analysis module (the analyst's R,
Python code).

If there is a problem in BDAE(TM), it is returned as an SQL error code (ORA-20001 to 20500)
and an R error message.

BDAE(TM) first performs a syntax check for R, and then processes the data and calls the module
only if there are no problems. If there are problems, the analyst resolves them and reruns them.

※ R has poor exception handling compared to Python. The API of the R engine, which is written in
C, has limitations.

15

Copyright @Raymond. All rights reserved

Python Coding Style (#1)13

Python Coding Style is different from R. Python requires a module name (usually a file name) and a
start function name among many functions to be called. (Not the normal way to call __main__)

import pandas as pd
import numpy as np
import seaborn as sns
from StreamToLogger import StreamToLogger
import sys
import logging, logging.handlers

def describe(df):
logger = logging.getLogger('TitanicDesc:describe')
logger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',

logging.handlers.DEFAULT_TCP_LOGGING_PORT)
logger.addHandler(socketHandler)

sys.stdout = StreamToLogger(logger,logging.INFO)
sys.stderr = StreamToLogger(logger,logging.ERROR)

print('----- start -----')
colums_ = df.columns.tolist()
print(str(colums_))
df.columns = list(map(str.lower,colums_))
df_desc = df.describe()
print(str(df_desc))
df_desc.reset_index(inplace=True)
df_desc.columns = ['vars', 'passengerid', 'survived', 'pclass', 'age', 'sibsp', 'parch', 'fare']
df_melt = pd.melt(df_desc, id_vars=['vars'])
print('----- end -----’)

socketHandler.close()
logger.removeHandler(socketHandler)

return df_melt
16

Copyright @Raymond. All rights reserved

Python Coding Style (#2)13

The arguments of the Python module's start function are the same as the R function coding
style, and are the same as two. The first one is the input data, and the second one is additional
data. You can name it as you like. Unlike R, it does not support descriptive form.

※ In the case of parallel processing, the function name (ap(s)GroupEval) is different, and the parallel processing
column names must be provided.
※ It is necessary to understand the SQL execution mechanism of Oracle Database(TM) . The Oracle Optimizer
creates a plan based on statistical information that is stored in the input and output format. Since Oracle does
not automatically recognize the final Python output, you must inform it of this. (Red on the right)
※ If the output is complex, you can create it as an Oracle View and just write ‘VIEW_NAME’. this is BDAE(TM)
one of functionalities.
※ The part that automatically creates Python and R output as SELECT statements is on GitHub, and we will make
it into a View.

17

Copyright @Raymond. All rights reserved

BDAE(TM) Web Editor14

BDAE(TM) Web, the Web Editor part was imported and used as an open source package. It does
not mean that you should develop it here. You can copy and paste what you developed in an
existing development tool (R studio, Jupyter notebook, etc.).

※ If there is a line number in the case of a syntax error, you can use this, and the line number on the left is that
line number.

18

Copyright @Raymond. All rights reserved

BDAE(TM) Python CRUD15

In the case of Python, Module Name and Function Name (start function) must exist, and
BDAE(TM) executes both the case in DB and the file configuration, but DB is executed first.

That is, if it is not in DB, it means that the Module is searched in the PYTHONPATH location.
(Customer sets it)

19

Copyright @Raymond. All rights reserved

Python DataFrame, R data.frame16

Since all RDBMS tables are 2D Tensors, we cannot escape from this. Therefore, both input and
output values must be written in the Python Pandas DataFrame and R data.frame formats. (In the
case of R, both data.frame and data.table outputs are supported.)

Input is done automatically by BDAE(TM) , but the output must be created and returned by the
analyst when returning. The case is an issue when entering, but if you do it as below, you can also
use columns with mixed case.

If SELECT is “col1”, .., BDAE(TM) will pass the mixed case form as it is.
Analysts should be aware of this part. Be careful when using Pandas DataFrame columns.
It would be better to change all columns to uppercase or lowercase and then work on them.
(※ df[‘col1’] is used in Python, R, etc., and case is important at this time.)

If you say SELECT “Passenger” as Passenger, it will be capitalized. This is not something that
BDAE(TM) does, but rather something that the Data Dictionary API does, so you should be aware
of it.

※ This part is not due to BDAE(TM) , but is a characteristic of the Oracle Database(TM) SQL engine.
※ If you do SELECT * FROM .., the column case at the time the table was created will be applied as is.

20

Copyright @Raymond. All rights reserved

NA, NaN, Inf (#1)17

In analysis, NA (Not Available), NaN (NULL), Inf (Infinity) are important.
However, in Oracle Database(TM), NA and NaN are the same value NULL,
and Inf is provided as follows. Infinity in R below is 1.0/0.0 is positive Infinity, -1.0/0.0 is
negative Infinity.

1. In case of R
X <- c(1,2,3,NA,5)
Y <- c(1.1,-1.0/0,1.0/0,4.0,5.34)

df <- data.frame(X,Y)
df

2. In case of Python
import pandas as pd
import numpy as np

def returnNAN():
df = pd.DataFrame([['motor type',1, np.inf],

[np.nan, 2, 3.2],
['RF', np.nan, 4.5]],
columns = list('abc'))

return df 21

Copyright @Raymond. All rights reserved

NA, NaN, Inf (#2)17

In Oracle, Infinity is returned as binary_double_infinity, but if you simply call this SQL in JAVA,
an Overflow will occur, so be careful. (This is not an Oracle Database(TM) or BDAE(TM) problem.)

SELECT A, case when B=-binary_double_infinity
then '-Infinity'
when B=binary_double_infinity

then '+Infinity'
else TO_CHAR(B) end AS B

FROM (
SELECT *
FROM
table(asEval(
NULL,
'SELECT 1 as A, 1.0 as B FROM dual',
'R_infinity’))

);

22

Copyright @Raymond. All rights reserved

Output DataFrame vs Oracle Type Matching18

The red ‘select <column list from output-table>’ part on the right usually uses dual as follows.
However, if there are many columns like below, it is annoying. Therefore, it is convenient to use it
by making it a View. Just input ‘V_OUTPUT1’. (※ This part is a function of BDAE(TM))

'SELECT CAST(''AA'' AS VARCHAR2(40)) EQP,
CAST(''AA'' AS VARCHAR2(40)) UNIT,
CAST(''AA'' AS VARCHAR2(40)) LOT,
CAST(''AA'' AS VARCHAR2(40)) WAFER,
CAST(''AA'' AS VARCHAR2(40)) RECIPE,
CAST(''AA'' AS VARCHAR2(40)) PARAM,
CAST(''AA'' AS VARCHAR2(100)) LOCATION
FROM DUAL’

CREATE VIEW V_OUTPUT1 AS
SELECT CAST(''AA'' AS VARCHAR2(40)) EQP,

CAST(''AA'' AS VARCHAR2(40)) UNIT,
CAST(''AA'' AS VARCHAR2(40)) LOT,
CAST(''AA'' AS VARCHAR2(40)) WAFER,
CAST(''AA'' AS VARCHAR2(40)) RECIPE,
CAST(''AA'' AS VARCHAR2(40)) PARAM,
CAST(''AA'' AS VARCHAR2(100)) LOCATION
FROM DUAL;

23

Copyright @Raymond. All rights reserved

Real Time Logging19

If there is a system error, you cannot see the logs in the Python or R modules.
(※ BDAE(TM) is not executed one line at a time like the Python or R development environment.)

BDAE(TM) transmits the error in the form of Description defined in ORA-20000 when there is a
Python or R error.

If there is no error and you want to debug, it is better to use remote logging during development
rather than doing it every time with a file. This part is included in GitHub.

In the case of Python, you can run the LogServer.py.

24

Copyright @Raymond. All rights reserved

Python Module Development (Input)20

In a development environment without BDAE(TM), it is possible to use the Python sqlalchemy
package. It does not work if you only install pip install sqlalchemy, cx_Oracle.
You need an Oracle Client, which you can download from the Oracle site.
The usage is as follows. With this, you can develop modules while checking columns.

import sqlalchemyimport pandas as pd
import pandas as pdimport cx_Oracle
import osfrom sqlalchemy
import create_engine
LOCATION = r"C:\Users\Admin\Downloads\instantclient-basic-windows.x64-23.8.0.25.04\instantclient_23_8“
os.environ["PATH"] = LOCATION + ";" + os.environ["PATH"]

oracle_connection_string = 'oracle+cx_oracle://{username}:{password}@{hostname}:{port}’
DATABASE = "FREE“
SCHEMA = "rquser“
PASSWORD = “0000“
engine = create_engine(oracle_connection_string.format(username=SCHEMA,
 password= PASSWORD, hostname='177.175.54.97', port='1521', database='FREE',))

conn = engine.connect()
SQL = \
‘’’
SELECT ...
‘’’
df = pd.read_sql_query(SQL, conn)

25

Copyright @Raymond. All rights reserved

R Module Development (Input)21

In a development environment without BDAE(TM) , it is possible to use the ROracle package.
ROracle installation is done using Github or the Internet, but the installation on Windows is on GitHub.
Oracle Client is required, which is uploaded to the Cloud. (Installation file folder)
The usage is as follows. With this, development is performed by expecting BDAE(TM) input.

Oracle Installation Location

Sys.setenv("ORACLE_HOME"="/u01/app/oracle/product/12.2.0.1/db_1")
library(DBI)
library(ROracle)

driv <- dbDriver("Oracle")

connect.string <- paste(
 "(DESCRIPTION=",
 "(ADDRESS=(PROTOCOL = TCP)(HOST = 177.175.54.97)(PORT = 1521))",
 "(CONNECT_DATA=(SERVER = DEDICATED)",
 "(SERVICE_NAME = FREE)))", sep = "")

conn <- dbConnect(driv, username="rquser", password=“0000", dbname=connect.string)
df <- dbGetQuery(conn,"SELECT * FROM FDC_TRACE WHERE ROWNUM < 10")

26

Copyright @Raymond. All rights reserved

Python Output to Oracle Data Type(#1)22

In the end, I created a utility because it was difficult to manually do the SELECT ... FROM
DUAL part of BDAE(TM) SQL every time.

It is the Output part, and if you use the below, it will be created, and if you make it into a View
again, it will be convenient.

def dtype_to_dbtype(typestr):
 return {
 'int64': lambda: '1',
 'object': lambda: "CAST(''AA'' AS VARCHAR2(40))",
 'float32': lambda: '1.0',
 'float64': lambda: '1.0',
 'datetime64[ns]': lambda: 'TO_TIMESTAMP(NULL)',
 'byte': lambda: 'TO_BLOB(NULL)'
 }.get(typestr, lambda: typestr + "not defined type.")()

def space_fill_underbar(column_name):
 return '_'.join(column_name.split(' '))

27

Copyright @Raymond. All rights reserved

Python Output to Oracle Data Type(#2)22

Calling generate_dual_select (df) below will create a “SELECT ... FROM dual” statement.

def generate_dual_select (df):
 types = df.dtypes
 column_name_list = []
 column_type_list = []
 for i in range(len(types.index.tolist())):
 column_name_list.append(types.index.tolist()[i])
 column_type_list.append(str(types[types.index.tolist()[i]]))
 print("%-40s %s" %(types.index.tolist()[i], str(types[types.index.tolist()[i]])))

 sql = 'SELECT '
 last_index = len(column_name_list) - 1
 for i in range(last_index + 1):
 if i == last_index:
 sql = sql + ' ' + dtype_to_dbtype(column_type_list[i]) + ' ' + space_fill_underbar(column_name_list[i]) + '\nFROM dual'
 else:
 sql = sql + ' ' + dtype_to_dbtype(column_type_list[i]) + ' ' + space_fill_underbar(column_name_list[i]) + ',\n'

 return (sql)

sql = generate_dual_select(df)

print(sql)

Copyright @Raymond. All rights reserved

R Output to Oracle Data Type23

In the case of R, calling generate_dual_select(df) below will create a “SELECT ... FROM dual”
statement.

r_to_oracle_type <- function(r_type)
{
 switch(r_type,
 "character" = "VARCHAR2(4000)",
 "integer" = "NUMBER(10)",
 "numeric" = "FLOAT",
 "double" = "FLOAT",
 "logical" = "CHAR(1)",
 "Date" = "DATE",
 "POSIXct" = "TIMESTAMP",
 "factor" = "VARCHAR2(4000)",
 "list" = "CLOB",
 "unknown" = "VARCHAR2(4000)",
 "VARCHAR2(4000)") # default
}

generate_dual_select <- function(df)
{
 types <- sapply(df, function(col) class(col)[1])
 oracle_types <- sapply(types, r_to_oracle_type)

 select_parts <- mapply(function(col_name, ora_type) {
 paste0("CAST(NULL AS ", ora_type, ") AS ", col_name)
 }, names(df), oracle_types, USE.NAMES = FALSE)

 paste("SELECT", paste(select_parts, collapse = ", "), "FROM dual")
}

실행
query <- generate_dual_select(df)
cat(query)

Copyright @Raymond. All rights reserved

BDAE(TM) SQL24

* If you do not use Dynamic SQL statements, this means that you will be dependent on the
customer's schema, which means that you will have to change the code every time to fit the
customer.

However, BDAE(TM) has been implemented to enable Dynamic SQL, which is a key differentiating
feature. BDAE(TM) has also been implemented to enable the same level as Oracle R Enterprise
(TM) .

(※ The only RDBMS that fully supports Database Dictionary is Oracle Database(TM).
The core of Dynamic SQL is that even if it becomes a SubQuery of a SubQuery .., it must transparently support
the Dictionary of top-level column information. Oh, I'm talking about the API level. Not SQL execution ..)

* About Parallel processing
1. Oracle Optimizer checks the input query, output query, and statistical information and

decides on parallel processing.
2. Therefore, Oracle Database(TM) gives up parallel processing when it detects that an image

(BLOB) or a string (CLOB) larger than 4000 bytes is included.
3. The same applies when using BDAE(TM). However, there are many ways to circumvent this

and use tricks to enable parallel processing, but this can only be done by using BDAE(TM)

rather than a regular SQL statement.

30

Copyright @Raymond. All rights reserved

DB-based development25

Before creating BDAE(TM) SQL, analysts should do the following:
Create a single module, a single function, without considering parallel processing.

Based on import sqlalchemy, let's first create a DataFrame with SQL and develop it.

SQL1 = “SELECT .. “ # This SQL statement is used to create the query to be analyzed.
df_data = pd.read_sql_query(SQL1, conn)

There are two cases where the function of the Class you want to create requires arguments.
1) Combination of simple Scalars
SQL2 = “SELECT 1 as ARG1, 0.5 as ARG2 FROM DUAL”

2) Referenced data (reference tables, e.g. Reference tables for similarity measurement,
inference tables)

SQL2 = “SELECT ... FROM TABLE “

df_args = pd.read_sql_query(SQL2, conn)

You can create a function for your purpose using those two, and register the module name and
function name in BDAE(TM) .
(※ You can work with R using ROracle, and the process is similar.) 31

Copyright @Raymond. All rights reserved

R Precautions26

As mentioned earlier, R has two coding styles.

1. function() style : Input variables can be used with any name, explicit return like return df
2. In the description format, the input data name to be analyzed is data, and additional data is

fixed as args.
You only need to write df once without a return statement, and any name other than
df can be used.

However, both 1 and 2 return data.frame format and stringsAsFactor=FALSE.

The stringsAsFactor part will of course be familiar to R analysts.
If you create a data.frame without thinking, the Category column is saved as a Factor
such as 1, 2, 3, etc.

3. The attributes of the data.frame returned like Python are generally strings, numbers, and
DateTime. (converting - as.character(), as.numeric(), ..)

32

Copyright @Raymond. All rights reserved

Visualization 과 Serialization/DeSerialization27

Both R and Python can create charts in three different forms.

1. Image Binary File Format (PNG, JPG, ...)
2. Image, String encoded in base64
3. Interactive Java Script String using plotly

When learning AI, there are many verification data results, various visualization charts, and
parameters, and you want to see them. Since the SQL statement returns only once, you can put
all of these in a DataFrame, data.frame, and that's it.

In particular, in the case of Model, it must be serialized, so it must be stored as an Oracle BLOB,
and when performing real-time inference during later operation, it must be deserialized and used
again.

It is quite easy and possible using BDAE(TM).

33

Copyright @Raymond. All rights reserved

BDAE(TM) does not use storage space at runtime..28

BDAE(TM) is executed in memory, without any separate storage space, and after analysis via
Python and R engines, everything is done in memory.

There are two ways to save the return results of BDAE(TM) in a DB: one is to have the analyst
create a separate session within Python or R, and the other is to use the following universal
database techniques.

CREATE TABLE RESULT_TEMPORARY_TABLE AS SELECT ... ;
INSERT INTO RESULT_PERMANENT_TABLE SELECT ... ;

34

※ Problems with Oracle In-Database Programs and Solutions with BDAE(TM)

1. Since it is managed separately from the SGA, PGA area of Oracle Database(TM). if Python or R internal code
excessively uses a lot of memory, it can kill the server where the Oracle Instance is located. (Out of Memory in
terms of OS)

2. Because we have seen this happen in real Oracle R Enterprise(TM) operations, BDAE(TM) is designed to set the
maximum available memory for a single session memory and monitor it during execution (every 10 seconds for that
session).

Copyright @Raymond. All rights reserved

BDAE(TM) and Apache NIFI(TM) Integration29

Using Apache NIFI(TM) and BDAE(TM) together allows you to configure batch jobs with a more
stable workflow. In particular, it is effective and can be organized neatly when it is SQL-based
rather than file-based.

35

Copyright @Raymond. All rights reserved

Utilizing BDAE(TM)

36

Copyright @Raymond. All rights reserved

1. Various AI tasks performed with Python and R (#1)1

The initial development goal of BDAE(TM) was to find a way to easily apply the latest algorithms to
existing solutions in manufacturing systems, such as SPC, FDC, and YMS.
In particular, there is a doubt about whether it is advisable to perform defect analysis, SPC,
descriptive statistics, ANOVA, etc. through pattern recognition in backends such as JAVA, or to
purchase separate expensive analysis products.

In actual high-tech fields, raw data is commonly in Oracle Database(TM), and R or Python scripts
are run on a separate application server.
However, BDAE(TM) solves problems such as algorithm source management, parallel processing,
and best performance on a separate server without massive data movement.

37

Copyright @Raymond. All rights reserved

Various AI tasks performed with Python and R (#2)2

If you perform real-time analysis quickly and receive the results as a universal SQL query result
like the one below, the application has a very simple structure.

※ The second argument of BDAE(TM) is used as
Query Data for comparison,
Model Data for inference,
or Argument for functions used in Python, R.

SQL> SELECT * /*+ parallel(20) */
2 FROM TABLE (apGroupEvalParallel (
3 cursor (
4 SELECT *
5 FROM TRACE_DATA
6 WHERE EQP_ID = ‘EPS001’
7 AND LOT_ID = ‘LOT001’
8 AND ETC = ‘…..’
9),

10 cursor(SELECT * FROM GOLDEN_EQUIPMENT ...),
11 ‘SELECT CAST(‘’A’’ AS VARCHAR2(40)) PARAMETER_ID,

1.0 SIMILARITY FROM DUAL’,
11 ‘EQP_ID, LOT_ID,’,
12 ‘DefectUtil:FastDTW’);

PARAMETER_ID SIMILARITY
-------------------- -------------
RF_POWER_1 2.23
O2_PUMP_1 0.5
Ch1_TEMP_1 2.1
……… ……
……… ……

38

Pattern Matching Algorithms

Copyright @Raymond. All rights reserved

Batch and integrate analytics tasks3

If you wrap the SQL statement above in Python or R and create a class, you can integrate various
analysis tasks and perform them at once, but parallel processing is possible, and the results can
also be received at once.

39

Copyright @Raymond. All rights reserved

Parallel distributed processing (#1)4

When grouping large tables and applying the same algorithm at once to receive results, using
parallel processing in Python or R can result in excessive reusability, performance, and memory
usage.

This parallel processing part is left to Oracle In-Database,
and the role of BDAE(TM) is to make Python and R modules
have a simple form that does not consider parallel
processing, and the above problems are solved.

Trace Data per 1 LOT/1 EQP

features

timecontext

40

Copyright @Raymond. All rights reserved

Parallel distributed processing (#2)4

The following query is an example of parallel distributed processing of a large table in units of
group columns in red. The Oracle Hint (/*+ parallel(20) */) section divides it into 20 and
parallelizes it, and the Python module then takes the form of a simple module that does not
consider parallel processing. BDAE(TM) makes this possible.

SELECT /*+ parallel(20) */*
FROM table(apGroupEvalParallel(

CURSOR(
WITH TARGET_TBLE AS
(

SELECT * FROM FDC_TRACE
WHERE 1=1

AND EQP_ID='EQP-200'
AND UNIT_ID='UNIT-02’

)
SELECT EQP_ID, UNIT_ID, LOT_ID, WAFER_ID, RECIPE, PARAM_ID,

(VALUE - (AVG(VALUE) OVER (PARTITION BY PARAM_ID)))
/ (STDDEV(VALUE) OVER (PARTITION BY PARAM_ID)) AS NORMALIZED_VALUE

FROM TARGET_TBLE
) ,
NULL,
'SELECT CAST(''A'' AS VARCHAR2(40)) EQP_ID,

CAST(''A'' AS VARCHAR2(40)) UNIT_ID,
CAST(''A'' AS VARCHAR2(40)) LOT_ID,
CAST(''A'' AS VARCHAR2(40)) WAFER_ID,
CAST(''A'' AS VARCHAR2(40)) RECIPE,
CAST(''A'' AS VARCHAR2(40)) RESULT
FROM DUAL',

'EQP_ID,UNIT_ID,LOT_ID,WAFER_ID,RECIPE,PARAM_ID',
'Standardization:normalize'));

..

41

Copyright @Raymond. All rights reserved

PreProcessing5

If Python or R performs preprocessing of a large portion of input data, memory and
performance issues arise. BDAE(TM) can accept and preprocess complex SQL statements such
as the following, and this is because Oracle Database(TM) has the most advanced SQL engine.

SELECT eqp_id, recipe_id, …, time, parameter_name, sma, ema
FROM (

SELECT eqp_id, recipe_id, time, …, parameter_name, parameter_value
FROM trace_data
WHERE 1=1

AND time between … and …
AND step_seq = ‘ …’
…

) a
MODEL

PARTITION BY (a.parameter_name, 2 / (1 + count(*) over (partition by a.parameter_name))
smoothing_constant)

DIMENSION BY (row_number() over (partition by a.parameter_name order by a.time) rn)
MEASURES (a.time, a.parameter_value, sma, 0 ema)
(

ema[1] = a.parameter_value[1],
ema[rn > 1] order by rn = (cv(smoothing_constant) * (parameter_value[cv()] - ema[cv() -1])) + ema[cv() -

1]
)

ORDER BY eqp_id, a.recipe_id, …, a.time, a.parameter_name;

42

Copyright @Raymond. All rights reserved

Smart Factory (#1)6

Based on existing solutions such as statistical quality analysis, anomaly detection, SPC, etc., you
can easily embed flexible functions into existing solutions as SQL statements without additional
cost by using various packages provided by Python and R in BDAE(TM).

※ BDAE(TM) is implemented as a SQL statement and runs in memory, so it can be added to any solution.

43

Copyright @Raymond. All rights reserved

Smart Factory (#2)6

This level of functionality can be implemented in about 5 lines.
The plotly package exists for both Python and R and makes charts interactive.

44

WITH LOT_SUM_ONE AS (
SELECT LOT_ID,

CASE WHEN PROD_GRADE = 9 THEN 'BAD BLOCK'
WHEN PROD_GRADE = 8 THEN 'ASSEMBLY'
WHEN PROD_GRADE = 7 THEN 'PTX'
WHEN PROD_GRADE = 6 THEN 'ID FAIL'
WHEN PROD_GRADE = 5 THEN 'OPEN'
WHEN PROD_GRADE = 4 THEN 'ABS'
WHEN PROD_GRADE = 3 THEN 'JOLY'
WHEN PROD_GRADE = 2 THEN 'FIT'
WHEN PROD_GRADE = 1 THEN 'MIN'
ELSE

'N/A'
END PROD_GRADE_DESC

, COUNT(PROD_GRADE) CNT FROM table (
productExplodeEvalCLob(cursor(

SELECT *
FROM LOT_SUM
WHERE LOT_ID = 'WKE21X1B31’

AND MACHINE_ID = '48PARA-03’ ...DURABLE_ID = 'Z718')))
GROUP BY LOT_ID, PROD_GRADE

)
SELECT *

FROM table(apTableEval(
cursor(

SELECT * FROM LOT_SUM_ONE
),
NULL,
'XML',
'LOTSUM_ERR_PIE:display'))

Copyright @Raymond. All rights reserved

Deep Learning Inference7

In places where BDAE(TM) is not installed for learning cost- or GPU-dependent algorithms,
you can learn the model and use it for inference in real time using BDAE(TM) .
(This is because the model may be different for each facility and product, and BDAE(TM)

supports DeSerialization.)

45

Copyright @Raymond. All rights reserved

Step by Step8

BDAE(TM) execution starts with a SQL statement, which can be called from any Oracle session-
based DB tool or application.

You can create anything with BDAE(TM), such as an image or document, and pass it as the result
of a SQL query. You can also DeSerialize a model stored in a BLOB to make inferences, or you can
separately index it.

This section 8 describes the process of creating Python, R modules, and BDAE(TM) SQL to call
them.

※ BDAE(TM) SQL is not a special SQL. It is a kind of table function in Oracle Database, but it is a
little special.

46

Copyright @Raymond. All rights reserved

R ML Example (#1 Select SQL Interface function)8

R provides four functions. The most commonly used ones are asTableEval() and asGroupEval().
asEval() can be used for testing purposes, and asRowEval is useful for doing something for each
defined number of rows.

The arguments of these functions are almost similar and intuitive.

※ The Python function is ap instead of as, and the functionality is exactly the same, and it also
provides four functions.

47

DescriptionSQL Interface function

Provide No Data into R ModuleasEval()

Provide Data into R Module asTableEval()

Provide Splitted Data per rows into R ModuleasRowEval()

Provided Splitted Data per grouped into R
Module

asGroupEval()

Copyright @Raymond. All rights reserved

R ML Example (#2 Development Phase)8

Typically, analysts develop interactively using R studio or Jupyter notebook during the development
phase..

48

After completing this development work, if you
want to run it on BDAE(TM),

1. Organize and move the source. (Copy & Paste) using
BDAE(TM) Web Editor.

2) Name the R module. Save it.

※ A defined R Module can be reused.
※ Python Module is similar, but you also need to enter the function name.

Copyright @Raymond. All rights reserved

R ML Example (#2 Development Phase)8

49

my<-function(img_file) {
zz <- file(img_file, "rb")
jpg1_lraw.lst <- vector("list", 1)
jpg1_lraw.lst[[1L]] <- readBin(zz, “raw”, file.info(img_file)[1, “size”])
close(zz)
df <- data.frame(name=img_file,stringsAsFactors=FALSE)
df$blob <- jpg1_lraw.lst
unlink(img_file)
return (df)

}

name <-c("/tmp/kohonen01.jpg","/tmp/kohonen02.jpg","/tmp/kohonen03.jpg","/tmp/kohonen04.jpg", "/tmp/kohonen05.jpg")

jpeg(name[1])
plot(ss,type="changes")
dev.off()
jpeg(name[2])
plot(ss, type="count", main="Node Counts")
dev.off()

When transferring R source in the development stage to BDAE(TM) , the output must be
considered. Since it is eventually output in the form of a table, all data must be converted to the
form of R's data.frame and transferred. Therefore, some source modification is necessary, but since
this part is standardized, there will be no difficulty if you create and use reusable functions. In
order to put all images in a data.frame, create a function (my) and insert it.

Copyright @Raymond. All rights reserved

R ML Example (#2 Development Phase)8

. After merging each data.frame based on row using rbind, write down the final data.frame name.

50

df = my(name[1])
for (i in 2:length(name)) {

df_tmp = my(name[i])
log_print(name[i])
df = rbind(df, df_tmp)

}

df

. Save the above source as R_ml_chart using BDAE(TM) Web Editor. (Copy & Paste)

. To make the call, we now need to create BDAE(TM) SQL.

The data.frame created earlier consists of a file name and an image binary, so the output of
BDAE(TM) is

SELECT CAST(NULL AS VARCHAR2(40) Name, TO_BLOB) IMG FROM DUAL

You can create it simply with . For complex data.frame, you can use the output function in this
document. (generate_dual_select)

Copyright @Raymond. All rights reserved

R ML Example (#3 BDAE SQL Creation Phase)8

51

SELECT *
FROM
table(asEval(
NULL,
'SELECT CAST(NULL AS VARCHAR2(40)) name, TO_BLOB(NULL) img FROM dual',
'R_ml_chart'))

※ In the case of Python, the start function name, such as P_ml_chart:display, must be separated by a comma.

Finally, the SQL using asEval() is as follows.

1. Of the four functions, since we do not receive data from BDAE(TM) , select asEval()
2. there is no additional data (e.g. arguments for R), so NULL,
3. the output part is the image name and the image binary (JPG), so red,
4. and finally, enter R_ml_chart, the name of the R module containing the algorithm.

Copyright @Raymond. All rights reserved

R ML Example (#4 Review the result)8

52

◁ SQL executed (run)

◁ Used R Module

◁ SQL Result

Copyright @Raymond. All rights reserved

R ML Example (#4 Review the result)8

For example, if you call SQL with the DBeaver(TM) tool, you will see the following results.
You can see the chart image right away in the DBeaver(TM) tool, knowing that it is an image.

53

Copyright @Raymond. All rights reserved

Python Example8

Python is not much different from R.

R is an excellent language for data interpretation, and Python has already established itself as a
main language for AI due to its fast performance and GPU usage.

From the BDAE(TM) perspective, Python is also recommended because of its good exception
handling techniques.

54

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#1 Table Example)8

The LOT_SUM table originally looks like this, and what's special is the existence of the MAPPING
column. The Grade part of the PRODUCTs in the LOT exists as a CLOB column.

55

Let's assume we want to draw a PIE chart of Grade for a specific LOT below.

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#2 Development Phase)8

Drawing Pie Chat in Python is very simple. It only takes 2~3 lines.
(It is not much different in R. R also provides the same package.)

What is needed is that the information of the corresponding LOT is passed in df. This Pie Chat is
interactive because it is automatically generated with JavaScript. (When the Mouse moves...)

However, it is passed in the form of <div> for the web server (backend).

56

import pandas as pd
import plotly.express as px
import plotly.offline as py

def display(df):
fig = px.pie(df, values='CNT', names='PROD_GRADE_DESC', title='LOT ID : ' + df['LOT_ID'][0] + ', Product Grade Distribution')
fig.update_traces(textposition='inside', textinfo='percent+label')
total = py.offline.plot(fig, output_type='div')

return (total)

Now, let's save the module name as LOTSUM_Error_Pie and the function name as display using
the BDAE Web Editor.

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#3 EDA)8

Preprocessing is required. Originally, LOT_SUM's Mapping is a CLOB column, and this needs to be
resolved based on Rows. Therefore, it is easy to draw a chart by making it look like this.

57

Is it possible to dynamically create a Mapping table
based on rows?

You can create a separate table using PL/SQL, but it
will take up a lot of space.

So what should we do?

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#4 Preprocessing)8

BDAE(TM) is equipped with a preprocessing module and can be created dynamically as follows.
It is created dynamically and in this case, it uses purely Oracle Native functions without calling
Python or R.

58

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#4 Preprocessing)8

This productExplodeEvalClob function is a function provided by BDAE(TM) and is made without
Python or R in the case of CLob. This is because it cannot be solved with a general SQL statement
when CLob exceeds 4000 bytes.

※ The problem is the case of complex schemas that cannot be created with a single SQL.
BDAE(TM) can do it, but the backend will have to send DB Query several times to create it.

※ What about BLOB? In this case, BDAE(TM) Python or R must be used. Think about the inference.

59

SELECT *
FROM table (

productExplodeEvalCLob(
cursor(

SELECT *
FROM LOT_SUM
WHERE 1=1

AND LOT_ID = ‘WKE21X1B31’
AND MACHINE_ID = ‘48PARA-03’
AND DURABLE_ID = ‘Z718’)

)
);

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#5 Choose function)8

This productExplodeEvalClob function is a function provided by BDAE(TM) and is made without
Python or R in the case of CLob. This is because it cannot be solved with a general SQL statement
when CLob exceeds 4000 bytes.

※ The problem is the case of complex schemas that cannot be created with a single SQL.
BDAE(TM) can do it, but the backend will have to send DB Query several times to create it.

※ What about BLOB? In this case, BDAE(TM) Python or R must be used. Think about the inference.

60

DescriptionSQL Interface function

Provide No Data into Python ModuleapEval()

Provide Data into Python Module apTableEval()

Provide Splitted Data per rows into Python
Module

apRowEval()

Provided Splitted Data per grouped into Python
Module

apGroupEval()

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#6 make SQL)8

You need to create an input SQL that matches the Python module.
The red part is created with data as a Pandas DataFrame column and called.

61

WITH LOT_SUM_ONE AS (
SELECT LOT_ID,

CASE WHEN PROD_GRADE = 9 THEN 'BAD BLOCK'
WHEN PROD_GRADE = 8 THEN 'ASSEMBLY'
WHEN PROD_GRADE = 7 THEN 'PTX'
WHEN PROD_GRADE = 6 THEN 'ID FAIL'
WHEN PROD_GRADE = 5 THEN 'OPEN'
WHEN PROD_GRADE = 4 THEN 'ABS'
WHEN PROD_GRADE = 3 THEN 'JOLY'
WHEN PROD_GRADE = 2 THEN 'FIT'
WHEN PROD_GRADE = 1 THEN 'MIN'
ELSE

'N/A'
END PROD_GRADE_DESC

, COUNT(PROD_GRADE) CNT from table (
productExplodeEvalCLob(cursor(

SELECT * FROM LOT_SUM WHERE LOT_ID = 'WKE21X1B31' AND MACHINE_ID = '48PARA-03' AND
DURABLE_ID = 'Z718'))) GROUP BY LOT_ID, PROD_GRADE
)

SELECT *
FROM table(apTableEval(
cursor(

SELECT * FROM LOT_SUM_ONE
),
NULL,
'XML’ -- XML, PNG, JPG etc are BDAE(TM) Predefined Keywords.
'LOTSUM_ERR_PIE:display'))

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#7 Result)8

If you run the above SQL with a DB tool, the result will be displayed in the JavaScript structure on
the right in CLOB format.

62

If you look at BDAE Web, you can see that interactive images work due to dependent CSS and
Javascript. (This is because plotly package was used in the Python module.)

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#8 Parallelism)8

If you want to get Pie Chart for all LOTs at TKIN/OUT time at once, not just one LOT?
The module should also be changed.

apGroupEval is automatically called for each LOT when Group Column is set to LOT_ID only.
So you don't have to think that multiple LOT_ID groups will come in. Just do your own.

In fact, this module is more reusable than the original. However, I just wanted to show the
Predefined Keyword called 'XML' in the previous example.

63

import pandas as pd
import plotly.express as px
import plotly.offline as py

def display(df):
fig = px.pie(df, values='CNT', names='PROD_GRADE_DESC', title='LOT ID : ' + df['LOT_ID'][0] + ', Product Grade Distribution')
fig.update_traces(textposition='inside', textinfo='percent+label')
total = py.offline.plot(fig, output_type='div’)
dict = { ‘LOT_ID’: [df[‘LOT_ID’]], ‘XML’ : total }

return (pd.DataFrame(dict)

Copyright @Raymond. All rights reserved

Python Smart Factory concerned Example (#8 Parallelism)8

The SQL statement must also be changed. However, if it is the module in the previous chapter,
the same Python module can be used in both apTableEval() and apGroupEval(). That means it is
recycled.

64

WITH LOT_SUM_ALL AS (
SELECT LOT_ID,

CASE WHEN PROD_GRADE = 9 THEN ＇BAD BLOCK＇
WHEN PROD_GRADE = 8 THEN ＇ASSEMBLY＇
WHEN PROD_GRADE = 7 THEN ＇PTX＇
WHEN PROD_GRADE = 6 THEN ＇ID FAIL＇
WHEN PROD_GRADE = 5 THEN ＇OPEN＇
WHEN PROD_GRADE = 4 THEN ＇ABS＇
WHEN PROD_GRADE = 3 THEN ＇JOLY＇
WHEN PROD_GRADE = 2 THEN ＇FIT＇
WHEN PROD_GRADE = 1 THEN ＇MIN＇
ELSE

'N/A'
END PROD_GRADE_DESC

, COUNT(PROD_GRADE) CNT from table (
productExplodeEvalCLob(cursor(

SELECT * FROM LOT_SUM WHERE BETWEEN TKIN ... AND))) GROUP BY LOT_ID, PROD_GRADE
)

SELECT *
FROM table(apGroupEval(
cursor(

SELECT * FROM LOT_SUM_ALL
),
NULL,
‘SELECT CAST(NULL AS VARCHAR2(40) LOT_ID, TO_CLOB(NULL) XML FROM DUAL ’ ,
LOT_ID, -- Grouping Column

'LOTSUM_ERR_PIE:display'))

Copyright @Raymond. All rights reserved

The Beautiful Times ...

65

Canada, Vancouver

